Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available March 1, 2027
- 
            Free, publicly-accessible full text available January 1, 2027
- 
            Free, publicly-accessible full text available September 1, 2026
- 
            We study analogues of Sidorenko’s conjecture and the forcing conjecture in oriented graphs, showing that natural variants of these conjectures in directed graphs are equivalent to the asymmetric, undirected analogues of the conjectures.more » « lessFree, publicly-accessible full text available July 4, 2026
- 
            Abstract A fundamental problem in Ramsey theory is to determine the growth rate in terms of $$n$$ of the Ramsey number $$r(H, K_{n}^{(3)})$$ of a fixed $$3$$-uniform hypergraph $$H$$ versus the complete $$3$$-uniform hypergraph with $$n$$ vertices. We study this problem, proving two main results. First, we show that for a broad class of $$H$$, including links of odd cycles and tight cycles of length not divisible by three, $$r(H, K_{n}^{(3)}) \ge 2^{\Omega _{H}(n \log n)}$$. This significantly generalizes and simplifies an earlier construction of Fox and He which handled the case of links of odd cycles and is sharp both in this case and for all but finitely many tight cycles of length not divisible by three. Second, disproving a folklore conjecture in the area, we show that there exists a linear hypergraph $$H$$ for which $$r(H, K_{n}^{(3)})$$ is superpolynomial in $$n$$. This provides the first example of a separation between $$r(H,K_{n}^{(3)})$$ and $$r(H,K_{n,n,n}^{(3)})$$, since the latter is known to be polynomial in $$n$$ when $$H$$ is linear.more » « lessFree, publicly-accessible full text available June 1, 2026
- 
            Free, publicly-accessible full text available February 1, 2026
- 
            Aichholzer, Oswin; Wang, Haitao (Ed.)A graph is said to contain K_k (a clique of size k) as a weak immersion if it has k vertices, pairwise connected by edge-disjoint paths. In 1989, Lescure and Meyniel made the following conjecture related to Hadwiger’s conjecture: Every graph of chromatic number k contains K_k as a weak immersion. We prove this conjecture for graphs with at most 1.4(k-1) vertices. As an application, we make some progress on Albertson’s conjecture on crossing numbers of graphs, according to which every graph G with chromatic number k satisfies cr(G) ≥ cr(K_k). In particular, we show that the conjecture is true for all graphs of chromatic number k, provided that they have at most 1.4(k-1) vertices and k is sufficiently large.more » « lessFree, publicly-accessible full text available January 1, 2026
- 
            Abstract Theq-colour Ramsey number of ak-uniform hypergraphHis the minimum integerNsuch that anyq-colouring of the completek-uniform hypergraph onNvertices contains a monochromatic copy ofH. The study of these numbers is one of the central topics in Combinatorics. In 1973, Erdős and Graham asked to maximise the Ramsey number of a graph as a function of the number of its edges. Motivated by this problem, we study the analogous question for hypergaphs. For fixed$$k \ge 3$$and$$q \ge 2$$we prove that the largest possibleq-colour Ramsey number of ak-uniform hypergraph withmedges is at most$$\mathrm{tw}_k(O(\sqrt{m})),$$where tw denotes the tower function. We also present a construction showing that this bound is tight for$$q \ge 4$$. This resolves a problem by Conlon, Fox and Sudakov. They previously proved the upper bound for$$k \geq 4$$and the lower bound for$$k=3$$. Although in the graph case the tightness follows simply by considering a clique of appropriate size, for higher uniformities the construction is rather involved and is obtained by using paths in expander graphs.more » « lessFree, publicly-accessible full text available January 1, 2026
- 
            Abstract Theq-color Ramsey number of ak-uniform hypergraphG, denotedr(G; q), is the minimum integerNsuch that any coloring of the edges of the completek-uniform hypergraph onNvertices contains a monochromatic copy ofG. The study of these numbers is one of the most central topics in combinatorics. One natural question, which for triangles goes back to the work of Schur in 1916, is to determine the behavior ofr(G; q) for fixedGandqtending to infinity. In this paper, we study this problem for 3-uniform hypergraphs and determine the tower height ofr(G; q) as a function ofq. More precisely, given a hypergraphG, we determine whenr(G; q) behaves polynomially, exponentially or double exponentially inq. This answers a question of Axenovich, Gyárfás, Liu and Mubayi.more » « less
- 
            Abstract For a subset$$A$$of an abelian group$$G$$, given its size$$|A|$$, its doubling$$\kappa =|A+A|/|A|$$, and a parameter$$s$$which is small compared to$$|A|$$, we study the size of the largest sumset$$A+A'$$that can be guaranteed for a subset$$A'$$of$$A$$of size at most$$s$$. We show that a subset$$A'\subseteq A$$of size at most$$s$$can be found so that$$|A+A'| = \Omega (\!\min\! (\kappa ^{1/3},s)|A|)$$. Thus, a sumset significantly larger than the Cauchy–Davenport bound can be guaranteed by a bounded size subset assuming that the doubling$$\kappa$$is large. Building up on the same ideas, we resolve a conjecture of Bollobás, Leader and Tiba that for subsets$$A,B$$of$$\mathbb{F}_p$$of size at most$$\alpha p$$for an appropriate constant$$\alpha \gt 0$$, one only needs three elements$$b_1,b_2,b_3\in B$$to guarantee$$|A+\{b_1,b_2,b_3\}|\ge |A|+|B|-1$$. Allowing the use of larger subsets$$A'$$, we show that for sets$$A$$of bounded doubling, one only needs a subset$$A'$$with$$o(|A|)$$elements to guarantee that$$A+A'=A+A$$. We also address another conjecture and a question raised by Bollobás, Leader and Tiba on high-dimensional analogues and sets whose sumset cannot be saturated by a bounded size subset.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
